

Conceptual Approach to Get-There-itis (GTI)

The General Aviation (GA) Safety Perspective

Case Study

Coping Strategies

Concluding Remarks

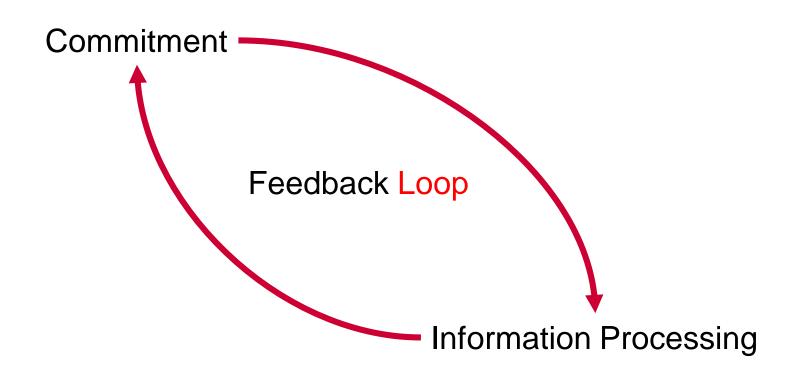
Conceptual Definition

Synonym of 'Plan Continuation Bias/Error'

 Failure to recognize that one's original plan of action is no longer appropriate for a changing situation or for a situation that is different than anticipated



Underlying Psychological Mechanisms


GTI has roots in...

- 'Commitment Bias': tendency towards spending great effort to remain consistent with one's prior commitments, actions, thoughts and dispositions, even when it is against one's own interest
- 'Confirmation Bias': tendency to gather evidence that confirms pre-existing expectations, by emphasizing or pursuing supporting evidence while dismissing or failing to seek contradictory evidence

Underlying Psychological Mechanisms

Translation to Aviation

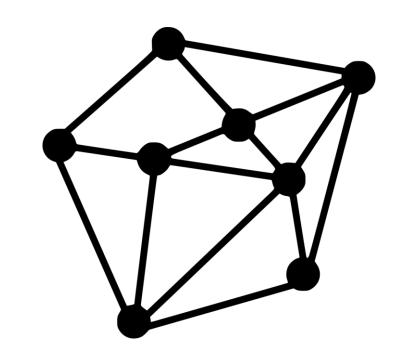
Being committed to- and focusing on the completion of their initial plan may render pilots unable to recognize that it is no longer appropriate for a developing situation/a situation that differs from what was expected

Risk Factors

Personal dispositions:

- Personal ego/overconfidence
- General goal orientation

Social pressures:


- Personal commitments/appointments
- Feelings of embarrassment or 'loss of face'

Situational factors:

- Excessive commitment to task completion
- Insufficient awareness of one's own/the plane's limitations
- Stress and/or Fatigue
- Mental workload & task demands
- Loss of situational awareness
- Progression through flight phases

. . .

- May contribute independently or in combination...
- Can be externally imposed or self-generated!

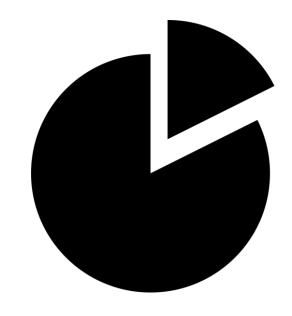
The GA Safety Perspective

Potential Consequences of GTI

Why is GTI such an important topic?

Potentially deadly manifestations for GA pilots:

- Conducting one/multiple approach(es) despite unsafe weather conditions
- 'Racing' weather conditions to a destination
- Failing to:
 - Abide by aircraft performance limits
 - Go-around from an unstabilized approach
 - Plan for a go-around or diversion



The GA Safety Perspective

Potential Consequences of GTI

- BEA (France): GTI accounted for 41.5% of fatal accidents involving GA pilots flying under VFR between 1991 & 1996
- CAA (UK) identified GTI as a causal factor in:
 - 27% of fatal GA LOC VMC accidents
 - 38% of fatal GA LOC IMC accidents
 - 47% of fatal GA CFIT accidents
 - Between 1985 & 1994

General Introduction (1)

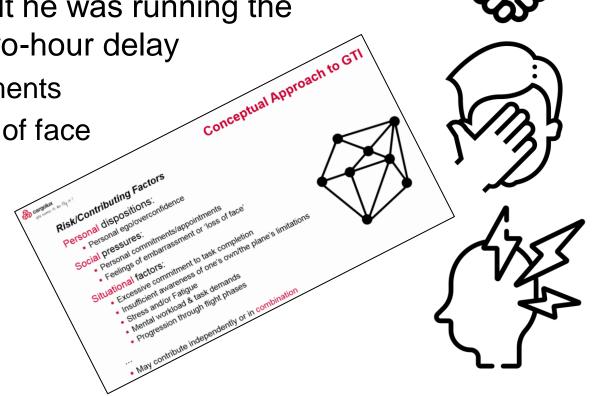
- 16th of July 1999: Kennedy took off from Essex County Airport in Caldwell, NJ in his Piper Saratoga @ 8:39 p.m.
- Accompanied by his wife and sister-in-law
- Destination: Hyannis Port, MA stop @ Martha's Vineyard,
 MA

General Introduction (2)

- Crashed into the Atlantic Ocean 7 ½ miles short from Martha's Vineyard an hour later @ 9:41 p.m. killing all 3 of the plane's occupants
- NTSB concluded on a failure to maintain control of the aircraft during a descent over water at night as a result of spatial disorientation

General Introduction (3)

- NTSB's investigation revealed that the spatial disorientation was the result of Kennedy encountering unexpected hazy weather in the dark moments after clearing the coast of NY
- This effectively required him to fly the airplane under IMC, for which he was not sufficiently trained yet, leading to the crash
- But how did Kennedy get into this situation in the first place?


Risk Factors for GTI (1)

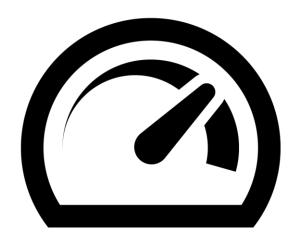
A. Kennedy was flying to his cousin's wedding at which he was scheduled to represent his side of the family, had promised his sister-in-law to drop her off @ Martha's Vineyard, and likely felt he was running the clock since he took off with a two-hour delay

✓ Personal commitments/appointments

✓ Feelings of embarrassment/loss of face

√ Stress

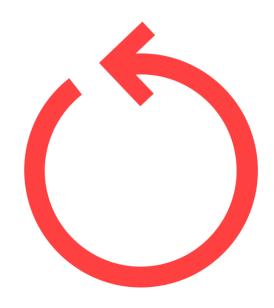
Risk Factors for GTI (2)


- B. He was familiar with the route and declined a proposal from one of his instructors to join him on the flight despite having less than 10 hours flying the Saratoga solo at night
 - ✓ Personal ego/overconfidence
 - ✓ Insufficient awareness of his own limitations

Risk Factors for GTI (3)

- C. He encountered challenging weather conditions for which he was not prepared while being only a few miles away from his first destination
 - ✓ Mental workload & task demands
 - ✓ Progression through flight phases
 - ✓ Loss of situational awareness

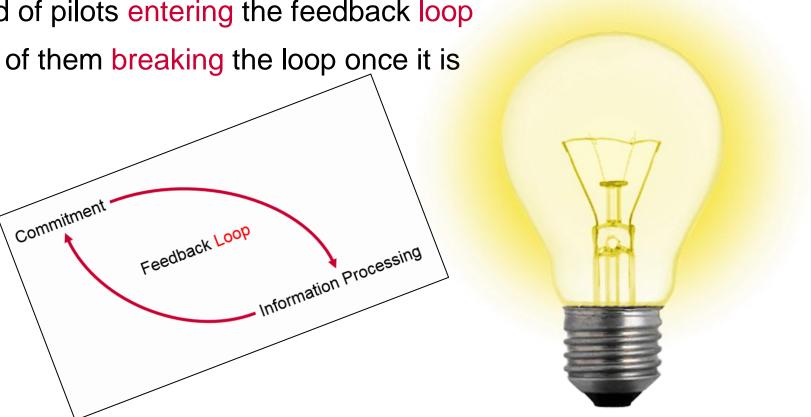
Consequences of GTI


A combination of these factors resulted in Kennedy falling victim to plan continuation bias/error (or GTI) on multiple occasions, effectively failing to:

- Recognize that his qualifications were doubtful for the flight he had planned, regardless of weather conditions
- Check the current weather before takeoff
- 3. Accept his instructor's proposal to assist him with the flight
- 4. Make any kind of radio contact; file a flight plan or request flight following
- Alter his plans in any way once he was faced with unfavorable weather conditions in flight

Return to our Conceptual Definition

- ✓ Due, in part, to several now well-established risk factors...
- ✓ Kennedy was highly committed to his original plan...
- ✓ failed to seek and dismissed evidence that was contradictory to his existing expectations...
- ✓ primed himself to not recognize that his original plan was no longer appropriate for a situation that turned out to be different from what he had expected...
- ✓ which eventually led to a crash that took 3 lives, including his own.


Goal

Two-fold...

Decrease the likelihood of pilots entering the feedback loop

Increase the likelihood of them breaking the loop once it is

established

Flight Training and Culture

As first ramparts against GTI...

- Commit to safety as a priority and act accordingly
- Aim to make pilots mindful of the dangers of letting their commitments/personal circumstances influence their decisions
- Teach pilots to think in terms of "What if?" and "Why?"
- Equip pilots with tools that support these processes

Preventing the Loop – PAVE

Perceiving Hazards prior to flight: PAVE Checklist

Pilot-in-Command Am I ready? Experience, recency, currency, physical and emotional condition

A Aircraft What are the aircraft's limitations for the flight? Appropriate, familiar, equipped, runways, load, altitudes, fuel capacity and quantity

enVironment What does/will the environment look like? Weather, terrain, airport, airspace, day/nighttime

External Pressures Am I under pressure to complete this flight? Commitments, displays of proficiency, avoiding embarassment, personal goals

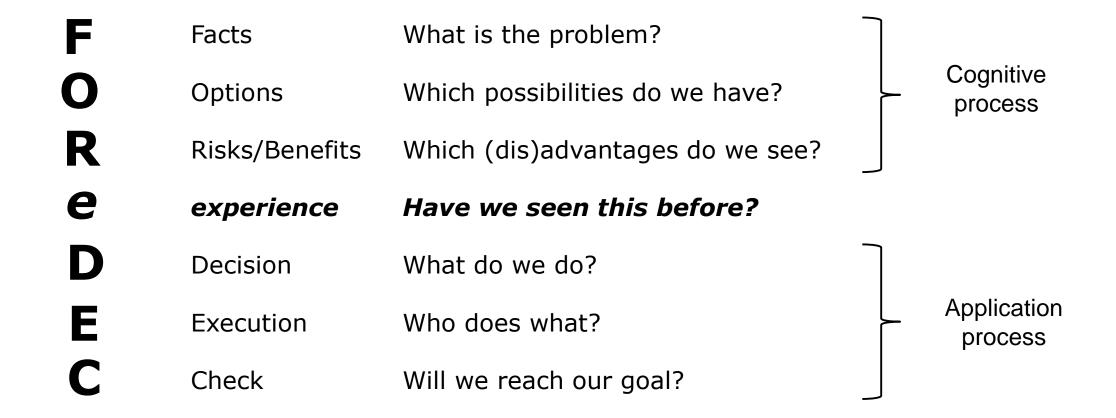
Preventing the Loop – Managing External Pressures

How to?

- Include time for extra fuel stops and diversions in original flight plan
- Formulate alternate plans in case of late arrival or make backup arrangements
- Advise others that arrival may be delayed and notify when delays are encountered
- Eliminate urge to get home by packing all necessities

Be ready for and accept delays, manage expectations...

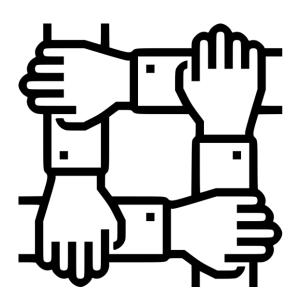
Avoid self-generated pressures!


Breaking the Loop – Decision-Making Tool (1)

FOReDEC

Breaking the Loop – Decision-Making Tool (2) (2) LUXAIR

Tools – FOReDEC (3) LUXAIR


Adequacy of FOReDEC?

- Conscious and collaborative solution to an unconscious and solitary problem...
- Yes but...

Systematically involve a conversation partner from the start!

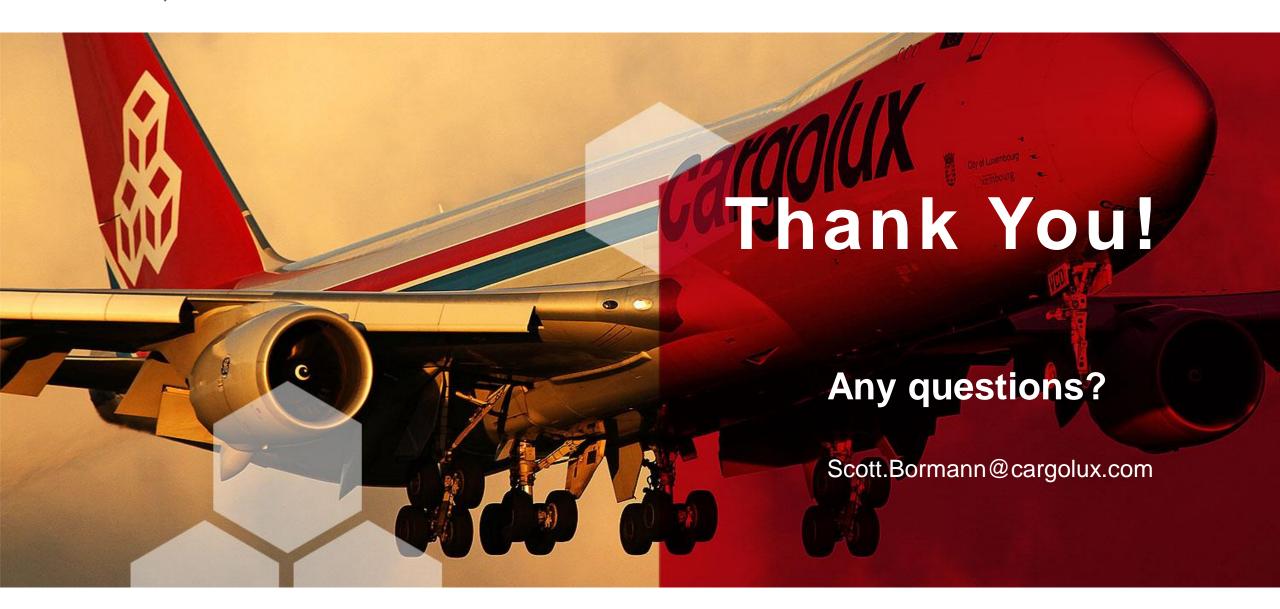
- ATC
- Flight Club peers
- Passenger(s)

Requires systemic integration from both flight training and culture!

What do Integration & Commitment Look Like?

Concluding Remarks

Summary


GTI...

- is a well-identified psychological phenomenon, however insidious it may be
- consists of a feedback loop between commitment and information processing
- constitutes a substantial threat to GA safety
- can be combatted with the help of well-established coping strategies that aim to prevent the loop from happening/to break it

There is no reason for GTI to continue claiming pilots' lives

Scott Bormann, January 25th 2020, UPL-AOPA Safety Seminar, Get-There-itis: When Inadequate Goal Commitment Impairs Operational Safety

References and Further Reading

- Bureau d'Enquêtes et d'Analyses pour la Sécurité de l'Aviation Civile (BEA). (2000). The Get-Home-Itis Syndrome. https://www.bea.aero/etudes/gethomeitis/gethomeitis.htm
- Civil Aviation Authority (CAA). (1997). CAP 667 Review of General Aviation Fatal Accidents 1985-1994.
 https://publicapps.caa.co.uk/docs/33/CAP667.PDF
- National Transportation Safety Board (NTSB). NTSB Identification: NYC99MA178.
 https://www.ntsb.gov/about/employment/_layouts/ntsb.aviation/brief2.aspx?ev_id=20001212X19354&ntsbno=NYC99MA178&akey=1
- Soll, H., Proske, S., Hofinger, G, & Steinhardt, G. (2016). Decision-Making Tools for Aeronautical Teams: /FOR-DEC and Beyond. Aviation Psychology and Applied Human Factors, 6(2), 101-112. doi: 10.1027/2192-0923/a000099
- Tuccio, W. (2011). Heuristics to Improve Human Factors Performance in Aviation. Journal of Aviation/Aerospace Education & Research, 20(3). doi: 10.15394/jaaer.2011.1640