Aerial robotics research at the ARG-SnT-UL

Dr. Jose-Luis SANCHEZ-LOPEZ

Postdoc Research Associate joseluis.sanchezlopez@uni.lu

Agenda

- Introduction
 - UL University of Luxembourg
 - SnT Interdisciplinary Center for Security, Reliability and Trust
 - ARG Automation & Robotics Research Group
- Aerial robotics
 - Definition
 - Capabilities / Skills
 - Extending Autonomy & Safety: research activities
- Research on aerial robotics at the ARG-SnT-UL
 - Research Process
 - Aerial Robotics Platforms
 - Aerial Robotics Lab and Simulators
- Aerial Robotics Applications at the ARG-SnT-UL

University of Luxembourg (UL)

- Founded in 2003
- Research-oriented
- Sites: Belval Campus, Kirchberg Campus and Limpertsberg Campus
- Programmes: 14 bachelor degrees, 42 master degrees and doctoral education
- Research and academic staff: 242 professors + 850 research staff
- Students: 6,423 students
- Structure
 - 3 Faculties
 - FSTM Faculty of Science, Technology and Medicine
 - FDEF Faculty of Law, Economics and Finance
 - FHSE Faculty of Humanities, Education and Social Sciences
 - 3 Interdisciplinary Research Centers
 - SnT Interdisciplinary Centre for Security, Reliability and Trust
 - LCSB Luxembourg Centre for Systems Biomedicine
 - C2DH Luxembourg Centre for Contemporary and Digital History

Interdisciplinary Center for Security, Reliability and Trust (SnT)

- Founded in 2009
- 6 SnT's strategic research priorities:
 - Autonomous Vehicles
 - Cybersecurity
 - FinTech
 - Internet of Things
 - Secure and Compliant Data Management
 - Space Systems and Resources
- Research and academic staff: around 25 Prof. & 120 research staff & 240 PhD students
- Funding: Consumed annual income > 20 M€
 - EU/ESA (10 %)
 - FNR (39 %)
 - Partnership program (18%)
 - UL Base Funding (33 %)
- Structure: 15 research groups
 - Automation & Robotics Research Group (ARG)

securityandtrust.lu

Automation & Robotics Research Group (ARG)

- Lead by Prof. Holger Voos
- Start 2012
- Research areas
 - Autonomous Vehicles and Robots
 - Distributed and Networked Automation and Control
- Team
 - 3 Postdoc researchers
 - 8 PhD students
 - Master & Undergrad students
- Partners

Aerial robotics research activities

- Responsible: Dr. Jose-Luis SANCHEZ-LOPEZ
- Team
 - 2 PostDoc researchers
 - 5 PhD students
 - Master & Undergrad students
- Research goal

 Provide aerial robots with the highest level of autonomy allowing them to perform different missions in different environments without human intervention

Agenda

- Introduction
 - UL University of Luxembourg
 - SnT Interdisciplinary Center for Security, Reliability and Trust
 - ARG Automation & Robotics Research Group
- Aerial robotics
 - Definition & Motivation
 - Capabilities / Skills
 - Extending Autonomy & Safety: research activities
- Research on aerial robotics at the ARG-SnT-UL
 - Research Process
 - Aerial Robotics Platforms
 - Aerial Robotics Lab and Simulators
- Aerial Robotics Applications at the ARG-SnT-UL

Aerial robot vs RPAS/UAV

• UAV/UAS, RPA/RPAS, Drone, ...

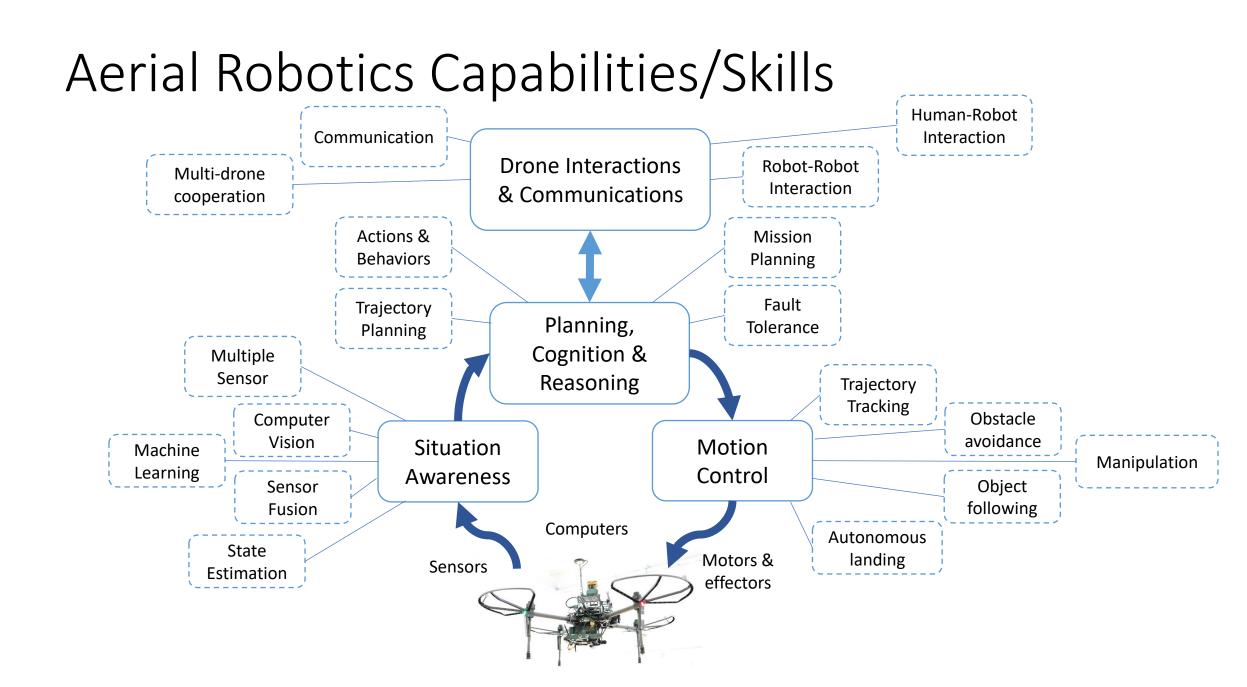
 Aerial vehicle / Aircraft (e.g. multirotor) with a limited level of autonomy (i.e. self GNC)

• Remote pilot controlling the platform (e.g. Ground Control Station)

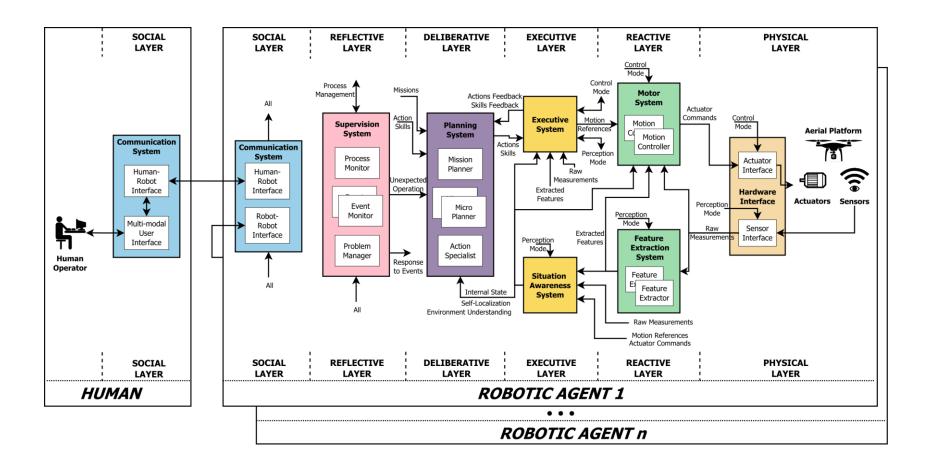
Communication link (highly dependent)

• (Autonomous) Aerial robot

- Aerial vehicle / Aircraft (e.g. multirotor) with a high level of autonomy (e.g. artificial intelligence) thanks to advanced sensing and computing
- No need for remote pilot controlling the platform (e.g. Ground Control Station)
 - Only sparse (i.e. non dedicated) supervision
 - Punctual high-level mission commands
- Independent of communication link


Autonomous aerial robots

- Aerial Robot = UAV/RPAS/drone + advanced payload + AI
- Why?
 - Simplification of use
 - Reduction of cost of operation
 - Scalability: Deployment of fleets
 - Range of operation: BLOS Flights
 - Increase in security and safety
 - Enable new applications
 - Applications based on 4 Ds:
 - Dull, Dirty, Dangerous And Dear



Extending Autonomy & Safety: research activities

• PhD thesis, 2017: Aerostack system architecture

Extending Autonomy & Safety: research activities

- BEST-RPAS Robust Emergency Sense-and-Avoid Capability for Small Remotely Piloted Aerial Systems
 - Funding body: FNR-CORE 2015 Call
 - Starting date: 1 Feb 2016
 - Duration: 4 Years
- SAFEMUV Safe Airframe Inspection using Multiple UAVs
 - Partners:
 - SnT-UL, Luxembourg
 - Hochschule Bonn-Rhein-Sieg, Germany
 - University of York, UK
 - Funding body: University of York Assuring Autonomy International Programme (AAIP) Demonstrators 2019
 - Starting date: 1 May 2020
 - Duration: 18 Months
- 5G-Sky Interconnecting the Sky in 5G and Beyond A Joint Communication and Control Approach
 - Funding body: FNR-CORE 2019 Call
 - Starting date: 1 April 2020
 - Duration: 4 Years

Agenda

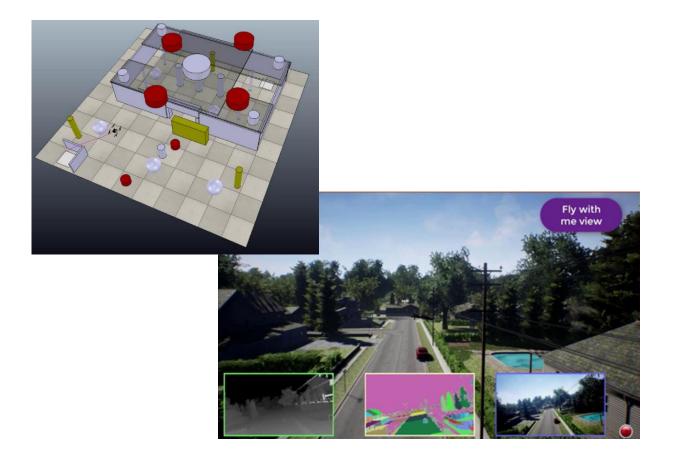
- Introduction
 - UL University of Luxembourg
 - SnT Interdisciplinary Center for Security, Reliability and Trust
 - ARG Automation & Robotics Research Group
- Aerial robotics
 - Definition
 - Capabilities / Skills
 - Extending Autonomy & Safety: research activities
- Research on aerial robotics at the ARG-SnT-UL
 - Research Process
 - Aerial Robotics Platforms
 - Aerial Robotics Lab and Simulators
- Aerial Robotics Applications at the ARG-SnT-UL

Research process on aerial robotics

- 1. Identify of an **open challenge** / research topic
- 2. Create a **project proposal & research plan** based on background knowledge and preliminary studies
- 3. Study the **state of the art** and related works
- 4. Propose an aerial robotic solution + AI methods (algorithm / theory / methods)
- 5. Implement the AI methods
- 6. SITL Simulate & collect data & analyze & evaluate & improve
- 7. Implement the aerial robotic solution
- 8. Test in controlled **aerial robotics testbed** & collect data & analyze & evaluate & improve
- 9. Test in **emulated realistic environment** & collect data & analyze & evaluate & improve
- 10. Test in **real environment** & collect data & analyze & evaluate & improve
- 11. Extract conclusions
- 12. Publish / Patent / Commercialize

Aerial Robotics Platforms

- Different multirotor Aerial Platforms
 - Size: from 10 cm to 1.2 m
 - MTOW: 1 to 20 kg
 - Payload: from 0.2 kg to 8 kg
 - Endurance: from 10 mins to unlimited
 - Commercial: AscTec, Parrot, DJI, ...
 - Self-designed and built
- Extra sensors
 - Cameras, LIDARs, RGB-D, ...
- Extra computers
 - CPUs, GPUs, uProcessors
- Extra effectors
 - Manipulator arms
- Extra
 - Tethered cable



Aerial Robotics Lab & Simulators

Simulators

• Software-In-The-Loop (SITL) simulation

Flight Arena

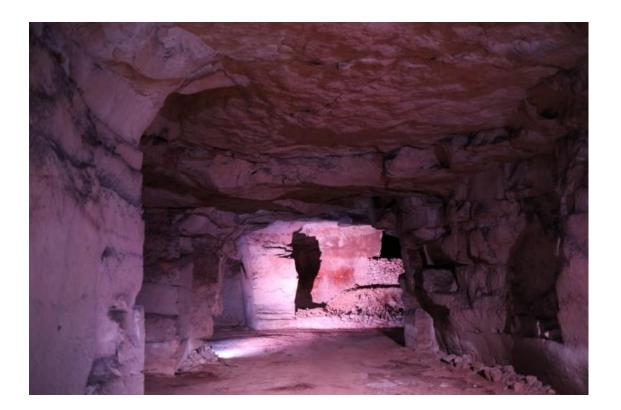
- Dimensions: 5.5 x 5.0 x 4.5 m (WxLxH)
- Motion capture system:
 - 8 OptiTrack cameras
 - Under mm precision @ 200 Hz

Agenda

- Introduction
 - UL University of Luxembourg
 - SnT Interdisciplinary Center for Security, Reliability and Trust
 - ARG Automation & Robotics Research Group
- Aerial robotics
 - Definition
 - Capabilities / Skills
 - Extending Autonomy & Safety: research activities
- Research on aerial robotics at the ARG-SnT-UL
 - Research Process
 - Aerial Robotics Platforms
 - Aerial Robotics Lab and Simulators

• Aerial Robotics Applications at the ARG-SnT-UL

Airframe Inspection



Funded by FNR-PoC – AFI Partner: Cargolux

Infrastructure Inspection (e.g. bridges, buildings, ...)

Mine Inspection

Funded by EU-INTERREG - GRONE

Surveillance (of data centers)

SnT Partnership with LuxConnect

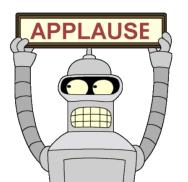
Applications

- Search and Rescue
- Autonomous take-off and landing on moving vehicles
- Improvised Explosive Detection and Deactivation
- Anti-drone aerial robot

SnT Partnership with Army of Luxembourg

Navigation in populated environments with both static and dynamic obstacles (e.g. cities)

Applications:


- Smart cities
- Emergency assistance
- Delivery
- Photography and filming
- Service Robots
- Personal Assistance

Dr. Jose-Luis Sanchez-Lopez

Post-doctoral research associate

joseluis.sanchezlopez@uni.lu

